Gait Design Using Self–Manipulation

نویسنده

  • Aaron M. Johnson
چکیده

Design insight into steady–state locomotion requires careful analysis of the dynamics within and transitions among the combinatorially many possible contact conditions that a legged robot will experience. To that end the self–manipulation formalism, originally intended to aid in the analysis of dynamical transitions, leans on the well established manipulation literature to systematically populate these continuous and discrete dynamics and apply a consistent structure that has proven to be useful in the analysis of grasping tasks. These ideas are instantiated on RHex with a pronking gait in which all legs are used together. Here a new behavior is presented that is both significantly faster than prior pronking gaits and also inherently stable allowing for open-loop operation. This new, stably robust pronk will enable dynamic transitions such leaping from running in any stride without requiring a decision two strides ahead of the leap. Keywords–Legged locomotion; robotics; motion analysis

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Experiments in Constrained Prehensile Manipulation: Distributed Manipulation with Ropes

This paper describes our experiments with a distributed manipulation system. We study a system in which multiple robots cooperate to move large objects such as furniture and boxes using a constrained prehensile manipulation mode, by wrapping ropes around them. The system consists of three manipulation skills: tieing ropes around objects, affecting translations using a flossing manipulation gait...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014